PsychoPath

http://psychopath.sourceforge.net

B Presentation Outline

« XML and XPath terminology.
* Basic XPath 2.0 Queries.
* Key Requirements of PsychoPath.
* PsychoPath project details:
* Design and implementation.
* Testing.
* Performance.
* Evaluation.
* Conclusions and Future Work.

Introduction 444

« XML is a mark-up language that defines objects and
the relationships between them in documents.

« XPath is a language to address, extract and view
particular parts of an XML document.

 XPath 2.0 is a language update that introduces XML
Schema awareness and simple/complex types.

* PsychoPath is a Schema Aware XPath 2.0 processor.

* Main competitor is Saxon written by Michael Kay -
one of the authors of the XPath 2.0 specification.

* Open source version of Saxon does not support
XML Schema.

: , eeee
Basic XPath 2.0 Queries esel
<shop> Example 1

<item> //item[2]

<name>Flour</name>
<price>10.01</price>
</item>

<item>
<name>Cake</name>
<price>10</price>
</item>

<item>
<name>Egg</name>
<price>10.0</price>
</item>

</shop>

returns the second item node

Example 2
//item[./price=10]

returns the Cake and Egg item
nodes

XPath 2.0 specification: http://www.w3.0rg/TR/xpath20/

Key Requirements 13

* Good Object-Oriented architecture.

* Modularity.

 Components fully tested.

« Components and Test suites easily extendable.
* Full implementation of the XPath 2.0 grammar.

* Implementation of as many XPath 2.0 types,
operators and functions as time permits.

* Analyse performance considerations only if time
remains and not at expense of above requirements.

The Problem

{DM3) Other/Direct

({DM4)

I Serialize
drdr &

External PrQCGSSing Generation
Data Model Generation of Data Model
(DM1) (DM2)

Parse and Generate
optlonally Data
Model

validate

XPath Expression Processing
Static analysis phase {30Q5) Narmalize

(sa1 }
Parse
expression

(5Q4) Resolve
names

(5Q2) Initialize

S
__W

Dynamic
evaluation
phase

(DQ1})

ﬁ

Access
Op-Tree

£%
52
80
=K

(DQ2)
ﬁ
Provide
acCcess

rrom host environment

Schema Import
Processing

(S11) Provided by

host environment

* Only if static
typing enabled

** Dynamic type
check if static typing

not enabled

(DQ3) Initialize

——

(DQ4)
—

(DQ5) Access
——

Access and

create

and change

From hast

enviranment

*** Need not be
well-formed XML

Diagram taken from the XPath 2.0 specification

. .-"-
" \-,

N Development Process

)

Four main iterations:
1. XPath parsing and DOM loading.
2. Static Analysis.
3. Dynamic Analysis.
4. Implement more functions, types and operators.

8 Parser - JFlex & CUP

)

v Less time spent on writing the parser.
v Isolates parsing the code from the grammar.
v Easier to maintain and debug.

X Runtime inefficiency.

Abstract Syntax Tree (AST) | sse?

XPathNode v Efficient runtime.
resolve_names() X Need to modify all AST in order
~ to add a new operation.
normalize()
evaluate()

XPathNode

acecept(v: XPathVisitor) : Object

v No changes to AST required for a new operation.
Multiple implementations per operation possible.

v Code for operation is localized and not spread
throughout AST.

AN

x Runtime inefficiency — Double dispatch.

Modularity

<<Interfaces>»
XPathParser

<<Interface>>
StaticChecker

<<|nterfaces>>
Evaluator

parse{xpath: String) : XPath

check{root: XPathNode} : void

evaluate{root: XPathNode}

<<realize|£> <<rea|ize!|>> <<realize!|>>
| | |
| 1 |
JFlexCupParser StaticNameResolver DefaultEvaluator
: l
<< re%-llize';:- -:<re+|ize>>
\/ \/

<<Interfaces»
XPathVisitor

* Execution phases are independent.

* Top level interfaces are not tied to the Visitor Pattern.

XPath Functions 444

Over 100 functions are defined in XPath 2.0.
* Implementation per function must be minimal.

Function

<<Create>> Function{name: QName,arity: int}
evaluate(args: Collection) : ResultSequence

* Function signature is defined by its name and
arity.

* Each function is registered with a library.

Function dispatch:

* Function signature is used as a lookup key
in the library.

* The entry will be the function to evaluate.

XPath Types ccer

Support for XML Schema types (over 25 defined).

AnyType

Z‘k [ﬁ AnyType
string _type() : String
LAnySimpleType NodeType
il ﬁ; P L string _value() : String
AnyAtomicType CtrType
ZP [‘-\ constructor(arg: ResuliSequence) : ResultSequence
UntypedAtomic CtrType type_name() - Sm'ng
NumericType XSBoolgan XSString CalendarType

e Constructor function automatically defined on
types which derive from CtrType.

* QOperators are implemented by the types.

User Interface -4

Results are returned in a ResultSequence.
« List of items of type AnyType.
* Need to identify concrete type of object.
* User frequently knows the type.

Example for the XPath expression “//*":

DOMLoader loader = new XercesLoader();
Load XML Document doc = loader.load(xml):
DynamicContext dc = new DefaultDynamicContext(null, doc);

XPathParser xpp = new JFlexCupParser();
Parse XPath XPath root = xpp.parse(“//*");

i ic StaticChecker name check = new StaticNameResolver(dc);
Static Analysis name_check.check(root);

Dynamic Evaluator eval = new DefaultEvaluator(dc, doc);
Analysis ResultSequence rs = eval.evaluate(root);

for(lterator i = rs.iterator(); i.hasNext();) {

Useful work NodeType node = (NodeType) i.next();
do_dom_node(node.node value());

}

Testing et

Fine grained testing of each class:

v Greater confidence that all code is tested.

v Precise knowledge of what caused a test to fail.
x Less confidence that the code works as a whole.
X

Large overhead in maintaining tests - classes
change frequently.

Testing of main interfaces:
v High level interfaces change less frequently.
Confidence that components interact properly.

v

v Less test code (not test cases).
X Hard to ensure test coverage.
X

Hard to ensure that expected failures occurred
for a specific reason.

B Test Cases coer

* Test cases (input, answer pair) are held in an
external text file.

v Easy to add test cases.
v No need to recompile suite on a new test.

Example: Statistics:
141 * 100% Test coverage in main
Jokokk packages according to JProbe.

1) xs:integer: 2 « Over 900 test cases.

kkkk

1/0

Skkokk

% div by 0!
FAIL

kkkk

eoee
HE

Performance $1
L X

Memuntzgl(]li’.]) .

Memory usage on o

evaluation of the oo /

XPath expression: Lo00

(10 to 20000)[19909] .

On milestone 4’ |t took 0b:00 00:10 00:20 00:30 00:40

400ms to evaluate_ Time Span:|Entire Run v| Loaded Classes: 764

e 00 Current status.

1800
1600
1400

1200
1000
800
600
400
200

w2 Constant evaluation
Time Span: | Entire Run w | Lopaded Classes: 683 t|me Of 30mS

* ResultSequence
objects created via a
factory.

* Lazy evaluation of
range expressions.

Demo 444

4 node Travelling Salesman Problem

tokenize((for $nodec in count(distinct-values(for $j in /
graph/edge/@src return string($j))) return(for $cost in (O
to xs:integer(tokenize(string(max(for $i in /graph/*/@cost
return xs:integer(string($i))) * xs:double($nodec)),'\.")[1])),
$path in (for $A in (/graph/edge[@src = 'A']) return for $B
in (/graph/edge[@src = string($A/@dst)]) return for $C in
(/graph/edge[@src = string($B/@dst)]) return for $D in /
graph/edge[@src = string($C/@dst)][@dst = 'A'] return
concat(string(xs:integer(string($A/@cost)) + xs:integer
(string($B/@cost)) + xs:integer(string($C/@cost)) +
xs:integer(string($D/@cost))), '|' , string($A/@src), string
($B/@src), string($C/@src), string($D/@src), 'A')) return
(iIf((count(distinct-values(tokenize(substring-after
(tokenize($path, \|)[2], 'A") ,'()"))) = ($nodec + 1)) and
starts-with($path, concat(string($cost), '|'))) then $path
else ()))[1]), "\|')

Evaluation 44+

* PsychoPath

Substantial amount of the specification has
been implemented.

Extendable design allows for further
implementation.

Not all XPath types implemented.

* PsychoPath vs. Saxon:

Saxon is faster — heavily optimised.
Saxon is backwards compatible with XPath 1.0.
Commercial version of Saxon is schema aware.

PsychoPath is able to handle some expressions
better.

PsychoPath is schema aware and open-source.

Conclusion 44+

* We met our goals and created the first free
schema aware XPath 2.0 processor, which
supports about 75% of the specification.

* PsychoPath is fully usable and is a good
competitive product against Saxon. Although not
fully optimized presents a real useful alternative
with its schema awareness.

« Communication and flexibility was the key to
success.

* There is a solid base for future work:

* re-factoring, optimisation, implementing the
full specification.

) Where is our money? cese

COCOMO

* Total Physical Source Lines of Code = 17,622

* Development Effort Estimate, Person-Years = 4.07
(48.82 months)

* Schedule Estimate, Years = 0.91 (10.95 months)

* Estimated Average Number of Developers
(Effort/Schedule) = 4.46

* Total Estimated Cost to Develop = $ 549,540
(average salary = $56,286/year, overhead = 2.40)

