
PsychoPath

http://psychopath.sourceforge.net

Presentation Outline

• XML and XPath terminology.

• Basic XPath 2.0 Queries.

• Key Requirements of PsychoPath.

• PsychoPath project details:

• Design and implementation.

• Testing.

• Performance.

• Evaluation.

• Conclusions and Future Work.

Introduction

• XML is a mark-up language that defines objects and
the relationships between them in documents.

• XPath is a language to address, extract and view
particular parts of an XML document.

• XPath 2.0 is a language update that introduces XML
Schema awareness and simple/complex types.

• PsychoPath is a Schema Aware XPath 2.0 processor.

• Main competitor is Saxon written by Michael Kay –
one of the authors of the XPath 2.0 specification.

• Open source version of Saxon does not support
XML Schema.

Basic XPath 2.0 Queries

<shop>

 <item>
 <name>Flour</name>
 <price>10.01</price>
 </item>

 <item>
 <name>Cake</name>
 <price>10</price>
 </item>

 <item>
 <name>Egg</name>
 <price>10.0</price>
 </item>

</shop>

Example 1

//item[2]

returns the second item node

Example 2

//item[./price=10]

returns the Cake and Egg item
nodes

XPath 2.0 specification: http://www.w3.org/TR/xpath20/

Key Requirements

• Good Object-Oriented architecture.

• Modularity.

• Components fully tested.

• Components and Test suites easily extendable.

• Full implementation of the XPath 2.0 grammar.

• Implementation of as many XPath 2.0 types,
operators and functions as time permits.

• Analyse performance considerations only if time
remains and not at expense of above requirements.

The Problem

Diagram taken from the XPath 2.0 specification

Development Process

Four main iterations:

1. XPath parsing and DOM loading.

2. Static Analysis.

3. Dynamic Analysis.

4. Implement more functions, types and operators.

Parser – JFlex & CUP

✔ Less time spent on writing the parser.

✔ Isolates parsing the code from the grammar.

✔ Easier to maintain and debug.

✗ Runtime inefficiency.

Abstract Syntax Tree (AST)

✔ Efficient runtime.

✗ Need to modify all AST in order
to add a new operation.

✔ No changes to AST required for a new operation.

✔ Multiple implementations per operation possible.

✔ Code for operation is localized and not spread
throughout AST.

✗ Runtime inefficiency – Double dispatch.

Modularity

• Execution phases are independent.

• Top level interfaces are not tied to the Visitor Pattern.

XPath Functions

Over 100 functions are defined in XPath 2.0.

• Implementation per function must be minimal.

• Function signature is defined by its name and
arity.

• Each function is registered with a library.

Function dispatch:

• Function signature is used as a lookup key
in the library.

• The entry will be the function to evaluate.

XPath Types

Support for XML Schema types (over 25 defined).

• Constructor function automatically defined on
types which derive from CtrType.

• Operators are implemented by the types.

User Interface

Results are returned in a ResultSequence.

• List of items of type AnyType.

• Need to identify concrete type of object.

• User frequently knows the type.

DOMLoader loader = new XercesLoader();
Document doc = loader.load(xml);
DynamicContext dc = new DefaultDynamicContext(null, doc);

XPathParser xpp = new JFlexCupParser();
XPath root = xpp.parse(“//*”);

StaticChecker name_check = new StaticNameResolver(dc);
name_check.check(root);

Evaluator eval = new DefaultEvaluator(dc, doc);
ResultSequence rs = eval.evaluate(root);

for(Iterator i = rs.iterator(); i.hasNext();) {
 NodeType node = (NodeType) i.next();
 do_dom_node(node.node_value());
}

Load XML

Parse XPath

Static Analysis

Dynamic
Analysis

Useful work

Example for the XPath expression “//*”:

Testing

Fine grained testing of each class:

✔ Greater confidence that all code is tested.

✔ Precise knowledge of what caused a test to fail.

✗ Less confidence that the code works as a whole.

✗ Large overhead in maintaining tests – classes
change frequently.

Testing of main interfaces:

✔ High level interfaces change less frequently.

✔ Confidence that components interact properly.

✔ Less test code (not test cases).

✗ Hard to ensure test coverage.

✗ Hard to ensure that expected failures occurred
for a specific reason.

Test Cases

• Test cases (input, answer pair) are held in an
external text file.

✔ Easy to add test cases.

✔ No need to recompile suite on a new test.

Example:

1+1

1) xs:integer: 2

1/0

% div by 0!
FAIL

Statistics:

• 100% Test coverage in main
packages according to JProbe.

• Over 900 test cases.

Performance

Memory usage on
evaluation of the
XPath expression:

(10 to 20000)[19909]

On milestone 4, it took
400ms to evaluate.

Current status.

• ResultSequence
objects created via a
factory.

• Lazy evaluation of
range expressions.

Constant evaluation
time of 30ms.

Demo

4 node Travelling Salesman Problem

tokenize((for $nodec in count(distinct-values(for $j in /
graph/edge/@src return string($j))) return(for $cost in (0
to xs:integer(tokenize(string(max(for $i in /graph/*/@cost
return xs:integer(string($i))) * xs:double($nodec)),'\.')[1])),
$path in (for $A in (/graph/edge[@src = 'A']) return for $B
in (/graph/edge[@src = string($A/@dst)]) return for $C in
(/graph/edge[@src = string($B/@dst)]) return for $D in /
graph/edge[@src = string($C/@dst)][@dst = 'A'] return
concat(string(xs:integer(string($A/@cost)) + xs:integer
(string($B/@cost)) + xs:integer(string($C/@cost)) +
xs:integer(string($D/@cost))), '|' , string($A/@src), string
($B/@src), string($C/@src), string($D/@src), 'A')) return
(if((count(distinct-values(tokenize(substring-after
(tokenize($path, '\|')[2], 'A') , '()'))) = ($nodec + 1)) and
starts-with($path, concat(string($cost), '|'))) then $path
else ()))[1]), '\|')

Evaluation

• PsychoPath

• Substantial amount of the specification has
been implemented.

• Extendable design allows for further
implementation.

• Not all XPath types implemented.

• PsychoPath vs. Saxon:

• Saxon is faster – heavily optimised.

• Saxon is backwards compatible with XPath 1.0.

• Commercial version of Saxon is schema aware.

• PsychoPath is able to handle some expressions
better.

• PsychoPath is schema aware and open-source.

Conclusion

• We met our goals and created the first free
schema aware XPath 2.0 processor, which
supports about 75% of the specification.

• PsychoPath is fully usable and is a good
competitive product against Saxon. Although not
fully optimized presents a real useful alternative
with its schema awareness.

• Communication and flexibility was the key to
success.

• There is a solid base for future work:

• re-factoring, optimisation, implementing the
full specification.

Where is our money?

COCOMO

• Total Physical Source Lines of Code = 17,622

• Development Effort Estimate, Person-Years = 4.07
(48.82 months)

• Schedule Estimate, Years = 0.91 (10.95 months)

• Estimated Average Number of Developers
(Effort/Schedule) = 4.46

• Total Estimated Cost to Develop = $ 549,540
(average salary = $56,286/year, overhead = 2.40)

